Translate

jueves, 11 de septiembre de 2014

Robótica Educativa

Robótica Educativa

La robótica educativa es un medio de aprendizaje, en el cual participan las personas que tienen motivación por el diseño y construcción de creaciones propias (objeto que posee características similares a las de la vida humana o animal). Estas creaciones se dan, en primera instancia, de forma mental y, posteriormente, en forma física, y son construidas con diferentes tipos de materiales, y controladas por un sistema computacional, los que son llamados prototipos o simulaciones.
En sus inicios los autómatas eran realizados con materiales fáciles de encontrar, ya sea con madera, cobre o cualquier otro material fácil de moldear.

Definición

Es el conjunto de actividades pedagógicas que apoyan y fortalecen áreas específicas del conocimiento y desarrollan competencias en el alumno, a través de la concepción, creación, ensamble y puesta en funcionamiento de robots.
El objetivo de la enseñanza de la Robótica, es lograr una adaptación de los alumnos a los procesos productivos actuales, en donde la Automatización (Tecnología que está relacionada con el empleo de sistemas mecánicos, electrónicos y basados en computadoras; en la operación y control de la producción) juega un rol muy importante. Sin embargo la robótica se considera un sistema que va más allá de una aplicación laboral.
Algo que también cabe mencionar en el estudio de la Robótica, es la gran necesidad de una perfecta relación entre el Software y el Hardware del Robot, ya que los movimientos que realizará éste Robot es un acoplamiento entre lo físico y lo lógico.

Robótica pedagógica

La robótica pedagógica tiene como finalidad la de explotar el deseo de los educandos por interactuar con un robot para favorecer los procesos cognitivos. Martial Vivet propone la siguiente definición de robótica pedagógica:1
Es la actividad de concepción, creación y puesta en funcionamiento, con fines pedagógicos, de objetos tecnológicos que son reproducciones reducidas muy fieles y significativas de los procesos y herramientas robóticas que son usados cotidianamente, sobre todo, en el medio industrial.

Origen

La Robótica Educativa se centra principalmente en la creación de un robot con el único fin de desarrollar de manera mucho más práctica y didáctica las habilidades motoras y cognitivas de quienes los usan. De esta manera se pretende estimular el interés por las ciencias duras y motivar la actividad sana. Así mismo hacer que el niño logre una organización en grupo, discusiones que permitan desarrollar habilidades sociales, respetar cada uno su turno para exponer y aprender a trabajar en equipo.

Fases

Se tiene la idea de que se construye un robot utilizando cables y equipo para hacerlo en la vida real, pero no es así, porque en la Robótica Educativa se pretende inicialmente crear un robot en computador, se hace en programas especiales como el xLogo (usando en verdad, una versión libre de éste), donde se realiza un pequeño estudio que ve si éste robot es realizable o no en la realidad. Aquí, al tenerlo en el computador se establece la función que cumplirá este robot, las cuales son específicas para realizar pequeñas tareas (como traer objetos o limpiar cosas, por ejemplo), y se observa en la pantalla el cómo se ve este robot. Luego, eliminando y arreglando, se procede a utilizar materiales para llevarlo a cabo en la realidad.
En este punto, se utilizan variados materiales, pueden ser desde piezas de sistemas constructivos como LegoMultiplo o Robo-Ed,2 a materiales de desecho que no se ocupan en casa (como cajas de cartón y circuitos en desuso). Aunque, también se usan materiales más de clase como son metales u otros derivados.

Objetivos

  • Que sean más ordenados.
  • Promover los experimentos, donde el equivocarse es parte del aprendizaje y el autodescubrimiento.
  • Ser más responsables con sus cosas.
  • Desarrollar mayor movilidad en sus manos.
  • Desarrollar sus conocimientos.
  • Desarrollar la habilidad en grupo, permitiendo a las personas socializar.
  • Desarrollar sus capacidades creativas.
  • Poder observar cada detalle.
  • Desarrollar el aprendizaje en forma divertida.

Glosario de términos utilizados en robótica

  • Actuador: Dispositivo que produce algún tipo de movimiento a partir de una orden proveniente de la interfaz.
  • Electroimán: Dispositivo que se magnetiza cuando se hace circular por el una corriente eléctrica. Se utiliza mucho para producir movimientos por medio de señales eléctricas.
  • Entrada de Sensor: Terminal de la interfaz en la que se pueden conectar sensores de distintos tipos.
  • Interfaz: Puente entre el sistema a controlar y el ordenador. Su función es transformar señales bajas en señales de mayor capacidad.
  • Led: Diodo emisor de luz.
  • Lenguaje computadora: Programa mediante el cual se puede especficar una serie de instrucciones para que la computadora pueda realizar una serie de tareas de forma independiente.
  • Programa de Control: Conjunto de intrucciones que están situadas en la computadora y determinan la función del mecanismo que se controla(robot).
  • Puerto: Enchufe de la computadora en donde se pueden conectar diferentes tipos de dispositivos.
  • Robot: Término derivado del vocablo checo Robota (trabajo, prestación personal). Máquina que gracias a un tipo de programación puede realizar tareas específicas.
  • Sensor: Dispositivo que proporciona información a la computadora de lo que ocurre en el entorno o en el robot que está siendo controlado.

Materiales utilizados en robótica educativa

Ejemplos de robots educativos controlados mediante PC, de tipos: brazo industrial articulado, estación neumática y móvil rastreador, usados en el aula de clase.
En entornos de robótica educativa y de ocio se utilizan con frecuencia unos dispositivos denominados interfaces de control, o más coloquialmente controladoras,3 cuya misión es reunir en un solo elemento todos los sistemas de conversión y acondicionamiento que necesita un ordenador personal PC para actuar como cerebro de un sistema de control automático o de un robot. Las interfaces de control se podrían así definir como placas multifunción de E/S (entrada/salida) en configuración externa (es decir, no son placas instalables en ninguna bahía de expansión del PC), que se conectan con el PC mediante alguno de los puertos de comunicaciones propios del mismo (paralelo, serie o USB, generalmente) y sirven de interfaz entre el mismo y los sensores y actuadores de un sistema de control. Las interfaces proporcionan, de forma general, una o varias de las siguientes funciones:
  • entradas analógicas, que convierten niveles analógicos de voltaje o de corriente en información digital procesable por el ordenador. A este tipo de entradas se pueden conectar distintos sensores analógicos, como por ejemplo una LDR (resistencia dependiente de la luz).
  • salidas analógicas, que convierten la información digital en corriente o voltaje analógicos de forma que el ordenador pueda controlar sucesos del "mundo real". Su principal misión es la de excitar distintos actuadores del equipamiento de control: válvulas, motores, servomecanismos, etc.
  • entradas y salidas digitales, usadas en aplicaciones donde el sistema de control sólo necesita discriminar el estado de una magnituddigital (por ejemplo, un sensor de contacto) y decidir la actuación o no de un elemento en un determinado proceso, por ejemplo, la activación/desactivación de unaelectroválvula.
  • recuento y temporización, algunas tarjetas incluyen este tipo de circuitos que resultan útiles en el recuento de sucesos, la medida de frecuencia y amplitud de pulsos, la generación de señales y pulsos de onda cuadrada, y para la captación de señales en el momento preciso.
Algunas de las interfaces de control más avanzadas cuentan además con la electrónica precisa para el acondicionamiento y la conversión de las señales, con sus propios microprocesador y memoria. Así, son capaces hasta de almacenar pequeños programas de control transmitidos desde un PC que luego pueden ejecutar independientemente de su conexión a éste.
Algunas de ellas disponen también de bibliotecas de programación de las E/S para permitir su utilización con distintos lenguajes de propósito general, entre ellos: LOGOBASIC yC. Existen varios modelos comerciales, entre los que se pueden mencionar:

Robótica Educativa por países

Situación en Argentina[editar]

Minibloq + OLPC + Arduino.
En Argentina la Robótica Educativa está creciendo cada vez más rápido.4 Distintos centros de estudios, como por ejemplo RobotGroup,5se están abriendo y también cuenta con un campeonato de robots para alumnos de colegios primarios y secundarios llamado Roboliga.6También se está fabricando un sistema constructivo de alta tecnología llamado Multiplo.7 Entre los productos de este sistema de diseño y prototipado de robots, se encuentra el robot Multiplo N6 el cual posee una placa DuinoBot programable con Arduino. Este robot se está utilizando en escuelas primarias y secundarias debido a lo fácil que resulta programarlo.8 Otro desarrollo en el área es Minibloq, un entorno de programación gráfica de código abierto, compatible con Arduino y con Multiplo. Es interesante que este software puede funcionar tanto bajo Windows (quizá aún el sistema operativo más extendido en las escuelas de Argentina) como bajo Linux, y está siendo probado con éxito en máquinas OLPC XO. Además, en Argentina se desarrolló Physical Etoys, un lenguaje de programación visual basado en Etoys que permite la interacción entre distintos robots de una manera entretenida, fácil y transversal a las materias de la currícula.
La empresa Mis ladrillos, muy conocida en argentina con sus juegos de ensamble, tiene sus propios desarrollos de robótica educativa. Hay modelos comerciales dentro de la línea Probots Robots. Destacan los modelos R300 y R360 en donde con ladrillos de encastre y piezas especiales se pueden armar modelos de robots. Tiene un “Ladrillo Inteligente” o e-Brick R4, con sensor de luz, sensor infrarrojo y ledes de iluminación que conectado a dos motores se lo puede programar desde la PC mediante un software ProbotLab el cual permite la programación por íconos.
Hay una versión especializada para colegios que es el R8. Se trata ladrillos similares a los R4, un poco más largos, con todos los sensores externos para una mejor combinación en los armados. Tiene sensor de luz, led de alta luminancia, sensor de tacto, micrófono, led bicolor, sensor infrarrojo, entrada para dos motores y está en desarrollo el sensor de distancia. Se programa con una versión de ProbotLab para este ladrillo.
Archivo:MAESTRO HIPOLITO Un Homenaje en el Dia del Maestro Peruano 2011.ogv
Proyecto sencillo de invernadero para niños en Physical Etoys.

Situación en Chile

En Chile, los primeros pasos educativos los dio Rambal Ltda.® en el año 2000 hasta el día de hoy, impartiendo cursos a distintos establecimientos educacionales y capacitando a pequeñas empresas PYMES. Cada año hay más equipos de robótica educativa que se organizan y compiten en distintos torneos, entre ellos FLL, Interescolar de robótica, entre otros. Muchas organizaciones llevan años trabajando en este tema y apoyando la creación de equipos de robótica en los establecimientos educacionales, una de ellas es Corazón de Chileno® , quienes se han encargado de difundir la robótica a lo largo del país ofreciendo talleres a niños en campamentos, y a distintas municipalidades. Además, estos jóvenes de distintas edades apoyan variadas competencias como son el CERR de la Compañía de material didáctico, el IER de la Universidad Andrés Bello, entre otras. Otra organizaciòn es Hoy en día, Rotatecno se dedica a la capacitación de jòvenes y niños, utilizando metodologìas de gestión de talentos, a Investigación y Desarrollo, apoyando a innovadores a llevar a cabo sus proyectos cientìficos y desarrollando prototipos o proyectos científicos y a la difusión de la robòtica mediante eventos y actividades en colegios y empresas.
Finalmente, se destaca al proyecto educativo EDUSTORM que nace el año 2008 del estudio de cómo llevar la robótica al ambiente educacional, utilizando metodologías Constructivistas. EDUSTORM se ha posicionado en Chile como la única empresa que realiza Talleres de Robótica en colegios basados en un Plan Anual de enseñanza para alumnos de 3.° a 8.° básico, conformando hoy en día al 2014 una Red Educativa de 8 Colegios en Santiago y la Fundación Teletón, donde se imparten estos talleres utilizando Kits: Lego NXT, Lego RCX, Parallax, OLLO Robotis, Pitágoras, Lego Energías Renovables y Circuitos Electrónicos combinados con material reciclable.

Situación en Colombia

En Colombia, el grupo de investigación Inteligenca Artificial en Educación de la Universidad Nacional de Colombia adelanta varios proyectos. A través de la robótica educativa se busca enseñar a los adolescentes que están mirando opciones profesionales, cómo construir robots con múltiples mecanismos para sensar un ambiente de trabajo. Con la ayuda de ejemplos de construcción, se abordan varios principios de la física mecánica, ondulatoria, electrónica y la algoritmia. También comprende la experimentación de diversas teorías de aprendizaje, retando a los actores del proceso educativo al cambio de un paradigma pasivo por otro proactivo.Ver robot bípedo Nacho.

Situación en España

En el REAL DECRETO 3473/2000, de 29 de diciembre, por el que se modifica el Real Decreto 1007/1991, de 14 de junio, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria -en el marco de la Ley Orgánica de Ordenación General del Sistema Educativo de España (LOGSE)- se fijaron los contenidos sobre control automático y robótica en la educación secundaria en España. Estos contenidos, tratados en la materia de Tecnología, son:
  • En tercer curso:
    • Bloque 4, Tecnologías de la información. Lenguajes de programación y desarrollo de aplicaciones.
    • Bloque 7, Control y robótica. Máquinas automáticas y robots: automatismos. Arquitectura de un robot. Elementos mecánicos y eléctricos para que un robot se mueva.
  • En cuarto curso:
    • Bloque 3, Tecnologías de la información. El ordenador como dispositivo de control: señales analógicas y digitales. Adquisición de datos. Programas de control.
    • Bloque 6, Control y robótica. Percepción del entorno: sensores empleados habitualmente. Lenguajes de control de robots: programación. Realimentación del sistema.
Las diferentes comunidades autónomas adaptaron estos contenidos en su normativa propia. Así, por ejemplo, en Castilla y León, en el Decreto 7/2002, de 10 de enero por el que se establece el Currículo de Educación Secundaria Obligatoria de la Comunidad de Castilla y León se determinan los siguientes contenidos:
  • En el apartado de Tecnologías de la información:
    • Tercer curso: Lenguajes de programación y desarrollo de aplicaciones.
    • Cuarto curso: El ordenador como dispositivo de control. Señales analógicas y digitales. Adquisición de datos. Programas de control.
  • En el apartado de Control y robótica:
    • Tercer curso: Máquinas automáticas y robots. Automatismos. Arquitectura de un robot. Elementos mecánicos y eléctricos para que un robot se mueva.
    • Cuarto curso: Percepción del entorno. Sensores empleados habitualmente. Lenguajes de control de robots. Programación. Realimentación.
Posteriormente, estos contenidos han sido modificados por la Ley Orgánica 2/2006, de 3 de mayo, de Educación (L.O.E.) según el REAL DECRETO 1631/2006, de 29 de diciembre, por el que se establecen las enseñanzas mínimas correspondientes a la Educación Secundaria Obligatoria. Ahora son tratatados en el cuarto curso de la materia de Tecnología, en su bloque 4. Control y robótica:
  • Experimentación con sistemas automáticos, sensores, actuadores y aplicación de la realimentación en dispositivos de control.
  • Diseño y construcción de robots.
  • Uso del ordenador como elemento de programación y control. Trabajo con simuladores informáticos para verificar y comprobar el funcionamiento de los sistemas diseñados.

Situación en México

En México hay varios esfuerzos por proponer una cultura de robótica educativa, algunos basados en la importación de kits de desarrollo y algunos basados en la ingeniería nacional. La red nacional de museos de ciencia y tecnología es la encargada de ser la anfitriona de parte de estos esfuerzos, así el Museo Horno 3 de Monterrey, El papalote en la Ciudad de México o Semilla en Chihuahua imparten cursos de este tipo, ya sea con ideas importadas o con ideas nacionales.

miércoles, 10 de septiembre de 2014

Vehiculos de Rodado

VEHÍCULOS DE RODADO
Mientras la gente y la mayoría de los animales se desplaza sobre extremidades, la mayoría de las máquinas móviles utilizan ruedas. La ruedas son más simples de controlar, tienen pocos problemas de estabilidad, usan menos energía por unidad de distancia de movimiento y son más veloces que las extremidades. La estabilidad se mantiene al fijar el centro de gravedad de el vehículo en triangulación de los puntos que tocan tierra. Sin embargo, las ruedas solamente pueden utilizarse sobre terrenos relativamente lisos y sólidos. Si se quiere utilizar el robot en terrenos rugosos las ruedas tienen que tener un tamaño mayor que los obstáculos encontrados.
El arreglo más familiar para las ruedas de un vehículo es el utilizado por los automóviles. Cuatro ruedas son colocadas en las esquinas de un rectángulo. La mayoría de estos vehículos tiene maniobrabilidad limitada debido a que tienen que avanzar para poder dar vuelta. También se requiere de un sistema de suspensión para asegurar que las ruedas estén en contacto con la superficie durante todo el tiempo. Cuando el robot se desplaza en línea recta las cuatro ruedas tienen que girar a la misma velocidad, en cambio al momento de dar vuelta las ruedas interiores giran más lento que las ruedas exteriores.
En un robot móvil, estos requerimientos son alcanzados por un buen diseño mecánico y mediante el control de la velocidad de las ruedas de dirección independiente. Sin embargo las imprecisiones que se presentan para alcanzar una trayectoria definida son causadas por factores mecánicos, deslizamiento de las ruedas, dobleces en los ejes de dirección, y desalineamiento de las ruedas.
¿EN QUE CONSISTE EL PROYECTO QUETZALCÓATL?
OBJETIVOS

  1. Construir el prototipo de un Robot Móvil Autónomo para propósitos didácticos y/o para prueba y verificación de algoritmos de control. Y dejar, con este proyecto de investigación, las bases para próximas mejoras en la optimización del prototipo.
  2. Crear nuevos investigadores que cuenten con experiencia y habilidad en el desarrollo de investigaciones y realización de proyectos de este tipo.
  3. Motivar y crear bases para el desarrollo de más proyectos didácticos y/o aplicados a la industria.
  4. Crear vínculos con otras instituciones de enseñanza superior en el Estado con la Universidad de Guadalajara.
METODOLOGÍA DEL DISEÑO
El proyecto consta básicamente de cuatro etapas; Etapa de Investigación, Etapa de Síntesis Informativa, Etapa de Diseño y Construcción, Etapa de pruebas, calibración y control.
A).- Etapa de Investigación.
a) Adquisición de Bibliografía.
b) Búsqueda de las fuentes de información específicas de aquellos elementos que constituyen el prototipo.
c) Investigación de las variables que intervienen en el proceso de control del prototipo.
d) Adquisición y estudio del software para el desarrollo e implementación de los algoritmos de control.
B).- Etapa de Síntesis de la Información.
Ésta etapa se basa en la etapa anterior y da como resultado una serie de elementos que son necesarios para el desarrollo de las siguientes etapas de el proyecto.
C).- Etapa de Diseño y Construcción.
En ésta etapa se aplica toda la información que se recaba y consulta, y que el diseño del prototipo requiere para el cumplimiento de los objetivos planteados anteriormente. En base a estos lineamientos se construyen las piezas que conforman el prototipo, con el material y componentes adecuados.
D).- Etapa de Pruebas, Calibración y Control.
Ésta es la etapa final, se adoptan las medidas necesarias para alcanzar los objetivos planteados. Se aplican los algoritmos de control y se prueban hasta conseguir el resultado esperado.
DESCRIPCIÓN DEL PROYECTO
El sistema propuesto consta de :
Un Robot Móvil Autónomo.
>Se encuentra formado por 2 módulos unidos entre sí mediante una unión mecánica, la locomoción del prototipo se realiza por medio de dos ruedas en cada eslabón, en donde cada una de las que son parte de el primer eslabón cuenta con un actuador ( motorreductor de DC ). Los servosistemas se componen de un Driver tipo Chopper con control en lazo cerrado de velocidad, para cada actuador en forma independiente.
La alimentación del Robot se realiza mediante módulos de baterías de 12 V y los voltajes se adaptan por medio de convertidores DC-DC.
La información del entorno donde se mueve el Robot se recaba mediante sensores ultrasónicos, los cuales cuentan con una tarjeta de interfaz, la cual pasa dicha información al Cerebro del Robot.
Debido a la complejidad del proyecto, este se descompone en un conjunto de subsistemas que son:
- Subsistema Mecánico. Este subsistema incluye los eslabones, las uniones mecánicas y el módulo que contiene a todo el sistema que permite que las ruedas giren ( ruedas, ejes, coples, baleros).
- Subsistema Eléctrico Este subsistema incluye los servosistemas ( Drivers ), las interfaces entre los sensores, los drivers y la computadora, así como las fuentes de alimentación.
-Subsistemas de Sensores
Ésta incluye los sensores de velocidad de tipo incremental, y sensores ultrasónicos para la exploración del medio ambiente.
- Subsistemas de Procesos, Planeación y Control En este subsistema se encuentran el control de los motores y todas las tareas que realiza el prototipo interiormente y exteriormente al interactuar con el medio ambiente.
Para llevar a cabo lo anterior se expande el bus ISA de la tarjeta madre, con lo que se logra optimar las tareas de procesamiento.
Trabajo enviado y realizado por:
Francisco Armando Dueñas Rodríguez
fduenas_[arroba]hotmail.com
Edad: 23 años
Universidad La Salle
Lic. en Informática
Cancún, Quintana Roo México

Operaciones de Procesamiento.

Operaciones de Procesamiento.

Además de las aplicaciones de manejo de piezas, existe una gran clase de aplicaciones en las cuales el robot realmente efectúa trabajos sobre piezas. Este trabajo casi siempre necesita que el efector final del robot sea una herramienta en lugar de una pinza.
Por tanto la utilización de una herramienta para efectuar el trabajo es una característica distinta de este grupo de aplicaciones. El tipo de herramienta depende de la operación de procesamiento que se realiza.
  • Soldadura por puntos.
Como el término lo sugiere, la soldadura por puntos es un proceso en el que dos piezas de metal se soldan en puntos localizados al hacer pasar una gran corriente eléctrica a través de las piezas donde se efectúa la soldadura.
  • Soldadura por arco continua.
La soldadura por arco es un proceso de soldadura continua en oposición a la soldadura por punto que podría llamarse un proceso discontinuo. La soldadura de arco continua se utiliza para obtener uniones largas o grandes uniones soldadas en las cuales, a menudo, se necesita una cierre hermético entre las dos piezas de metal que se van a unir. El proceso utiliza un electrodo en forma de barra o alambre de metal para suministrar la alta corriente eléctrica de 100 a 300 amperes.

Recubrimiento con spray
La mayoría de los productos fabricados de materiales metálicos requieren de alguna forma de acabado de pintura antes de la entrega al cliente. La tecnología para aplicar estos acabados varia en la complejidad desde métodos manuales simples a técnicas automáticas altamente sofisticadas. Se dividen los métodos de recubrimiento industrial en dos categorías:
1.- Métodos de recubrimiento de flujo e inmersión.
2.- Métodos de recubrimiento al spray.
Los métodos de recubrimiento mediante flujo de inmersión se suelen considerar que son métodos de aplicar pintura al producto de baja tecnología. La inmersión simplemente requiere sumergir la pieza o producto en un tanque de pintura liquida.

  • Otras Operaciones de proceso
Además de la soldadura por punto, la soldadura por arco, y el recubrimiento al spray existe una serie de otras aplicaciones de robots que utilizan alguna forma de herramienta especializada como efector final. Operaciones que están en ésta categoría incluyen:
Taladro, acanalado, y otras aplicaciones de mecanizado.
Rectificado, pulido, desbarbado, cepillado y operaciones similares.
Remachado, Corte por chorro de agua.

Taladro y corte por láser.


  • Laboratorios
Los robots están encontrando un gran número de aplicaciones en los laboratorios. Llevan acabo con efectividad tareas repetitivas como la colocación de tubos de pruebas dentro de los instrumentos de medición. En ésta etapa de su desarrollo los robots son utilizados para realizar procedimientos manuales automatizados. Un típico sistema de preparación de muestras consiste de un robot y una estación de laboratorio, la cual contiene balanzas, dispensarios, centrifugados, racks de tubos de pruebas, etc.
Las muestras son movidas desde la estación de laboratorios por el robot bajo el control de procedimientos de un programa.
Los fabricantes de estos sistemas mencionan tener tres ventajas sobre la operación manual: incrementan la productividad, mejoran el control de calidad y reducen la exposición del ser humano a sustancias químicas nocivas.
Las aplicaciones subsecuentes incluyen la medición del pH, viscosidad, y el porcentaje de sólidos en polímeros, preparación de plasma humano para muestras para ser examinadas, calor, flujo, peso y disolución de muestras para presentaciones espectromáticas.


  •  Manipuladores cinematicos
La tecnología robótica encontró su primer aplicación en la industria nuclear con el desarrollo de teleoperadores para manejar material radiactivo. Los robots más recientes han sido utilizados para soldar a control remoto y la inspección de tuberías en áreas de alta radiación. El accidente en la planta nuclear de Three Mile Island en Pennsylvania en 1979 estimuló el desarrollo y aplicación de los robots en la industria nuclear. El reactor numero 2 (TMI-2) predio su enfriamiento, y provocó la destrucción de la mayoría del reactor, y dejo grandes áreas del reactor contaminadas, inaccesible para el ser humano. Debido a los altos niveles de radiación las tareas de limpieza solo eran posibles por medios remotos. Varios robots y vehículos controlados remotamente han sido utilizados para tal fin en los lugares donde ha ocurrido una catástrofe de este tipo. Ésta clase de robots son equipados en su mayoría con sofisticados equipos para detectar niveles de radiación, cámaras, e incluso llegan a traer a bordo un minilaboratorio para hacer pruebas.

  • Agricultura
Para muchos la idea de tener un robot agricultor es ciencia ficción, pero la realidad es muy diferente; o al menos así parece ser para el Instituto de Investigación Australiano, el cual ha invertido una gran cantidad de dinero y tiempo en el desarrollo de este tipo de robots. Entre sus proyectos se encuentra una máquina que esquila a la ovejas. La trayectoria del cortador sobre el cuerpo de las ovejas se planea con un modelo geométrico de la oveja.
Para compensar el tamaño entre la oveja real y el modelo, se tiene un conjunto de sensores que registran la información de la respiración del animal como de su mismo tamaño, ésta es mandada a una computadora que realiza las compensaciones necesarias y modifica la trayectoria del cortador en tiempo real.

Debido a la escasez de trabajadores en los obradores, se desarrolla otro proyecto, que consiste en hacer un sistema automatizado de un obrador, el prototipo requiere un alto nivel de coordinación entre una cámara de vídeo y el efector final que realiza en menos de 30 segundos ocho cortes al cuerpo del cerdo.
Por su parte en Francia se hacen aplicaciones de tipo experimental para incluir a los robots en la siembra, y poda de los viñedos, como en la pizca de la manzana.

  • Espacio
La exploración espacial posee problemas especiales para el uso de robots. El medio ambiente es hostil para el ser humano, quien requiere un equipo de protección muy costoso tanto en la Tierra como en el Espacio. Muchos científicos han hecho la sugerencia de que es necesario el uso de Robots para continuar con los avances en la exploración espacial; pero como todavía no se llega a un grado de automatización tan precisa para ésta aplicación, el ser humano aún no ha podido ser reemplazado por estos. Por su parte, son los teleoperadores los que han encontrado aplicación en los transbordadores espaciales.
En Marzo de 1982 el transbordador Columbia fue el primero en utilizar este tipo de robots, aunque el ser humano participa en la realización del control de lazo cerrado.
Algunas investigaciones están encaminadas al diseño, construcción y control de vehículos autónomos, los cuales llevarán a bordo complejos laboratorios y cámaras muy sofisticadas para la exploración de otros planetas.
En Noviembre de 1970 los Rusos consiguieron el alunizaje del Lunokhod 1, el cual poseía cámaras de televisión, sensores y un pequeño laboratorio, era controlado remotamente desde la tierra.
En Julio de 1976, los Norteamericanos aterrizaron en Marte el Viking 1, llevaba abordo un brazo robotizado, el cual recogía muestras de piedra, tierra y otros elementos las cuales eran analizados en el laboratorio que fue acondicionado en el interior del robot. Por supuesto también contaba con un equipo muy sofisticado de cámaras de vídeo. 

  •  Vehículos submarinos
Dos eventos durante el verano de 1985 provocaron el incremento por el interés de los vehículos submarinos. En el primero - Un avión de la Air Indian se estrelló en el Océano Atlántico cerca de las costas de Irlanda - un vehículo submarino guiado remotamente, normalmente utilizado para el tendido de cable, fue utilizado para encontrar y recobrar la caja negra del avión. El segundo fue el descubrimiento del Titanic en el fondo de un cañón, donde había permanecido después del choque con un iceberg en 1912, cuatro kilómetros abajo de la superficie. Un vehículo submarino fue utilizado para encontrar, explorar y filmar el hallazgo.
En la actualidad muchos de estos vehículos submarinos se utilizan en la inspección y mantenimiento de tuberías que conducen petróleo, gas o aceite en las plataformas oceánicas; en el tendido e inspección del cableado para comunicaciones, para investigaciones geológicas y geofísicas en el suelo marino.
La tendencia hacia el estudio e investigación de este tipo de robots se incrementará a medida que la industria se interese aún más en la utilización de los robots, sobra mencionar los beneficios que se obtendrían si se consigue una tecnología segura para la exploración del suelo marino y la explotación del mismo.

  • Educación
Los robots están apareciendo en los salones de clases de tres distintas formas. Primero, los programas educacionales utilizan la simulación de control de robots como un medio de enseñanza. Un ejemplo palpable es la utilización del lenguaje de programación del robot Karel, el cual es un subconjunto de Pascal; este es utilizado por la introducción a la enseñanza de la programación.
El segundo y de uso más común es el uso del robot tortuga en conjunción con el lenguaje LOGO para enseñar ciencias computacionales. LOGO fue creado con la intención de proporcionar al estudiante un medio natural y divertido en el aprendizaje de las matemáticas.
En tercer lugar está el uso de los robots en los salones de clases. Una serie de manipuladores de bajo costo, robots móviles, y sistemas completos han sido desarrollados para su utilización en los laboratorios educacionales. Debido a su bajo costo muchos de estos sistemas no poseen una fiabilidad en su sistema mecánico, tienen poca exactitud, no existen los sensores y en su mayoría carecen de software.

El mercado de la robótica y las perspectivas futuras
Las ventas anuales para robots industriales han ido creciendo en Estados Unidos a razón del 25% de acuerdo a estadísticas del año 1981 a 1992. El incremento de ésta tasa se debe a factores muy diversos. En primer lugar, hay más personas en la industria que tienen conocimiento de la tecnología y de su potencial para sus aplicaciones de utilidad. En segundo lugar, la tecnología de la robótica mejorará en los próximos años de manera que hará a los robots más amistosos con el usuario, más fáciles de interconectar con otro hardware y más sencillos de instalar.
En tercer lugar, que crece el mercado, son previsibles economías de escala en la producción de robots para proporcionar una reducción en el precio unitario, lo que haría los proyectos de aplicaciones de robots más fáciles de justificar. En cuarto lugar se espera que el mercado de la robótica sufra una expansión más allá de las grandes empresas, que ha sido el cliente tradicional para ésta tecnología, y llegue a las empresas de tamaño mediano, pequeño y por que no; las microempresas. Estas circunstancias darán un notable incremento en las bases de clientes para los robots.
La robótica es una tecnología con futuro y también para el futuro. Si continúan las tendencias actuales, y si algunos de los estudios de investigación en el laboratorio actualmente en curso se convierten finalmente en una tecnología factible, los robots del futuro serán unidades móviles con uno o más brazos, capacidades de sensores múltiples y con la misma potencia de procesamiento de datos y de cálculo que las grandes computadoras actuales. Serán capaces de responder a ordenes dadas con voz humana. Así mismo serán capaces de recibir instrucciones generales y traducirlas, con el uso de la inteligencia artificial en un conjunto específico de acciones requeridas para llevarlas a cabo. Podrán ver, oír, palpar, aplicar una fuerza media con precisión a un objeto y desplazarse por sus propios medios.
En resumen, los futuros robots tendrían muchos de los atributos de los seres humanos. Es difícil pensar que los robots llegarán a sustituir a los seres humanos en el sentido de la obra de Carel Kapek, Robots Universales de Rossum. Por el contrario, la robótica es una tecnología que solo puede destinarse al beneficio de la humanidad. Sin embargo, como otras tecnologías, hay peligros potenciales implicados y deben establecerse salvaguardas para no permitir su uso pernicioso.
El paso del presente al futuro exigirá mucho trabajo de ingeniería mecánica, ingeniería electrónica, informática, ingeniería industrial, tecnología de materiales, ingenierías de sistemas de fabricación y ciencias sociales.
 Proyecto quetzalcoatl
Introducción
La Sociedad actual se encuentra inmersa en una Revolución Tecnológica, producto de la invención del transistor semiconductor en 1951 ( fecha en la que salió al mercado ). Este acontecimiento ha provocado cambios trascendentales así como radicales en los ámbitos sociales, económicos, y políticos del orbe mundial.
Ésta Revolución da origen a un gran número de ciencias multidiciplinarias; este es el caso de la Robótica. La Robótica es una ciencia que surge a finales de la década de los 50´s, y que a pesar de ser una ciencia relativamente nueva, ha demostrado ser un importante motor para el avance tecnológico en todos los ámbitos ( Industria de manufactura, ciencia, medicina, industria espacial; etc.), lo que genera expectativas muy interesantes para un tiempo no muy lejano.
Sin embargo es en la Industria de Manufactura donde la Robótica encuentra un campo de aplicación muy amplio, su función es la de suplir la mano de obra del Hombre en aquellos trabajos en los que las condiciones no son las óptimas para este ( minas, plantas nucleares, el fondo del mar; etc.), en trabajos muy repetitivos y en inumerables acciones de trabajo.
Debido al alto costo que representa el automatizar y robotizar un proceso de producción, la tendencia actual en Robótica es la investigación de microrobots y robots móviles autónomos con un cierto grado de inteligencia, este último es el campo en el que se basa este proyecto de investigación.
Por lo anteriormente expuesto se explica la necesidad y la importancia de que Institutos de Investigación, Centros Tecnológicos, la Industria Privada en coordinación con las Universidades se den a la tarea de destinar recursos tanto económicos y humanos para aliviar el rezago tecnológico que el país padece.
Cabe hacer mención que este proyecto fue financiado por el Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV).
¿ QUE ES UN ROBOT ?
Un robot puede ser visto en diferentes niveles de sofisticación, depende de la perspectiva con que se mire. Un técnico en mantenimiento puede ver un robot como una colección de componentes mecánicos y electrónicos; por su parte un ingeniero en sistemas puede pensar que un robot es una colección de subsistemas interrelacionados; un programador en cambio, simplemente lo ve como una máquina ha ser programada; por otro lado para un ingeniero de manufactura es una máquina capaz de realizar un tarea específica. En contraste, un científico puede pensar que un robot es un mecanismo el cuál él construye para probar una hipótesis.
Un robot puede ser descompuesto en un conjunto de subsistemas funcionales: procesos, planeación, control, sensores, sistemas eléctricos, y sistemas mecánicos. El subsistema de Software es una parte implícita de los subsistemas de sensores, planeación, y control; que integra todos los subsistemas como un todo.
En la actualidad, muchas de las funciones llevadas acabo por los subsistemas son realizadas manualmente, o de una forma off-line, pero en un futuro las investigaciones en estos campos permitirán la automatización de dichas tareas.
El Subsistema de Procesos incluye las tareas que lleva acabo el robot, el medio ambiente en el cual es colocado, y la interacción entre este y el robot. Este es el dominio de la ingeniería aplicada. Antes de que un robot pueda realizar una tarea, ésta debe ser buscada dentro de una secuencia de pasos que el robot pueda ejecutar. La tarea de búsqueda es llevada acabo por el Subsistema de Planeación, el cuál incluye los modelos de procesos inteligentes, percepción y planeación. En el modelo de procesos, los datos que se obtienen de una variedad de sensores son fusionados (Integración Sensorial) con modelos matemáticos de las tareas para formar un modelo del mundo. Al usar este modelo de mundo, el proceso de percepción selecciona la estrategia para ejecutar la tarea. Estas estrategias son convertidas dentro de los programas de control de el robot durante el proceso de planeación.
Estos programas son ejecutados por el Subsistema de Control; en este subsistema, los comandos de alto nivel son convertidos en referencias para actuadores físicos, los valores retroalimentados son comparados contra estas referencias, y los algoritmos de control estabilizan el movimiento de los elementos físicos.
Al realizar ésta tarea los mecanismos son modelados, el proceso es modelado, la ganancia de lazo cerrado puede ser adaptada, y los valores medidos son utilizados para actualizar los procesos y los modelos de los mecanismos.
Desde el subsistema de control se alimentan las referencias de los actuadores al Subsistema Eléctrico el cuál incluye todos los controles eléctricos de los actuadores. Los actuadores hidráulicos y neumáticos son usualmente manejados por electroválvulas controladas. También, este subsistema contiene computadoras, interfaces, y fuentes de alimentación. Los actuadores manejan los mecanismos en el Subsistema Mecánico para operar en el medio ambiente, esto es, realizar una tarea determinada. Los parámetros dentro del robot y del medio ambiente son monitoreados por el Subsistema de Sensores; ésta información sensórica se utiliza como retroalimentación en las ganancias de lazo cerrado para detectar potencialmente las situaciones peligrosas, para verificar que las tareas se realizan correctamente, y para construir un modelo del mundo.

  •  VEHÍCULOS
La mayoría de los robots usan ya sea ruedas o extremidades para moverse. Estas son usualmente montadas sobre una base para formar un vehículo, también se montan sobre ésta base, el equipo y los accesorios que realizan otras funciones. Los robots más versátiles son los robots "serpentina"; llamados así por que su locomoción se inspira en el movimiento de las serpientes; se pueden utilizar en terrenos subterráneos y de espacios reducidos, donde el hombre no tiene acceso y el medio ambiente no es el más propicio, como en las minas, túneles y ductos.
Algunos robots móviles tienen brazos manipuladores, esto es debido a sus funciones, y por otro lado la problemática de carecer de brazos idóneos; que tienen que ser pequeños, fuertes, eficientes y baratos. Un problema al cuál se enfrentan los diseñadores de robots, es la generación y almacenado de la energía; los cordones restringen el movimiento pero proveen energía ilimitada.
En contraste los robots con libre movimiento son limitados por su cantidad de energía que puedan almacenar y requieren de comunicación inalámbrica.
En la medida que los robots sean más sofisticados, serán utilizados en un mayor número de aplicaciones, muchas de las cuáles requieren movilidad. En algunas aplicaciones industriales, la necesidad de movilidad es eliminada por la construcción de células de trabajo alrededor del robot, de ésta manera un robot fijo puede dar servicio a varias máquinas. En estos sistemas de manufactura flexible (SMF) las partes son llevadas de una célula de trabajo a otra por vehículos autómatas. En ocasiones para limitar el movimiento del robot se monta sobre rieles para así llegar hasta las células de trabajo con menos complicaciones.
La movilidad es usualmente llevada acabo mediante ruedas, rieles ó extremidades. Los robots con extremidades pueden andar en terrenos más rugosos que los robot con rodado, pero el problema de control es más complejo. Los robots pueden alcanzar movilidad volando. Algunos se deslizan ligeramente sobre al tierra sobre conductos de aire; otros usan levitación magnética, para lo que se requieren superficies especialmente preparadas.
Los robots diseñados para usos en el espacio exterior no son afectados por la gravedad; se elimina el problema de levitación, pero se incrementa el problema del control y la estabilidad.


Clasificación de los Robots


Clasificación de los Robots

La potencia del software en el controlador determina la utilidad y flexibilidad del robot dentro de las limitantes del diseño mecánico y la capacidad de los sensores. Los robots han sido clasificados de acuerdo a su generación, a su nivel de inteligencia, a su nivel de control, y a su nivel de lenguaje de programación. Éstas clasificaciones reflejan la potencia del software en el controlador, en particular, la sofisticada interacción de los sensores. La generación de un robot se determina por el orden histórico de desarrollos en la robótica. Cinco generaciones son normalmente asignadas a los robots industriales. La tercera generación es utilizada en la industria, la cuarta se desarrolla en los laboratorios de investigación, y la quinta generación es un gran sueño.
1.- Robots Play-back, los cuales regeneran una secuencia de instrucciones grabadas, como un robot utilizado en recubrimiento por spray o soldadura por arco. Estos robots comúnmente tienen un control de lazo abierto.
2.- Robots controlados por sensores, estos tienen un control en lazo cerrado de movimientos manipulados, y hacen decisiones basados en datos obtenidos por sensores.
3.- Robots controlados por visión, donde los robots pueden manipular un objeto al utilizar información desde un sistema de visión.
4.- Robots controlados adaptablemente, donde los robots pueden automáticamente reprogramar sus acciones sobre la base de los datos obtenidos por los sensores.
5.- Robots con inteligencia artificial, donde las robots utilizan las técnicas de inteligencia artificial para hacer sus propias decisiones y resolver problemas.
La Asociación de Robots Japonesa (JIRA) ha clasificado a los robots dentro de seis clases sobre la base de su nivel de inteligencia:
1.- Dispositivos de manejo manual, controlados por una persona.
2.- Robots de secuencia arreglada.
3.- Robots de secuencia variable, donde un operador puede modificar la secuencia fácilmente.
4.- Robots regeneradores, donde el operador humano conduce el robot a través de la tarea.
5.- Robots de control numérico, donde el operador alimenta la programación del movimiento, hasta que se enseñe manualmente la tarea.
6.- Robots inteligentes, los cuales pueden entender e interactuar con cambios en el medio ambiente.
Los programas en el controlador del robot pueden ser agrupados de acuerdo al nivel de control que realizan.
1.- Nivel de inteligencia artificial, donde el programa aceptará un comando como "levantar el producto" y descomponerlo dentro de una secuencia de comandos de bajo nivel basados en un modelo estratégico de las tareas.
2.- Nivel de modo de control, donde los movimientos del sistema son modelados, para lo que se incluye la interacción dinámica entre los diferentes mecanismos, trayectorias planeadas, y los puntos de asignación seleccionados.
3.- Niveles de servosistemas, donde los actuadores controlan los parámetros de los mecanismos con el uso de una retroalimentación interna de los datos obtenidos por los sensores, y la ruta es modificada sobre la base de los datos que se obtienen de sensores externos. Todas las detecciones de fallas y mecanismos de corrección son implementadas en este nivel.
En la clasificación final se considerara el nivel del lenguaje de programación. La clave para una aplicación efectiva de los robots para una amplia variedad de tareas, es el desarrollo de lenguajes de alto nivel. Existen muchos sistemas de programación de robots, aunque la mayoría del software más avanzado se encuentra en los laboratorios de investigación. Los sistemas de programación de robots caen dentro de tres clases :
1.- Sistemas guiados, en el cual el usuario conduce el robot a través de los movimientos a ser realizados.
2.- Sistemas de programación de nivel-robot, en los cuales el usuario escribe un programa de computadora al especificar el movimiento y el sensado.
3.- Sistemas de programación de nivel-tarea, en el cual el usuario especifica la operación por sus acciones sobre los objetos que el robot manipula. 
5. Aplicaciones
Los robots son utilizados en una diversidad de aplicaciones, desde robots tortugas en los salones de clases, robots soldadores en la industria automotriz, hasta brazos teleoperados en el transbordador espacial.
Cada robot lleva consigo su problemática propia y sus soluciones afines; no obstante que mucha gente considera que la automatización de procesos a través de robots está en sus inicios, es un hecho innegable que la introducción de la tecnología robótica en la industria, ya ha causado un gran impacto. En este sentido la industria Automotriz desempeña un papel preponderante.
Es necesario hacer mención de los problemas de tipo social, económicos e incluso político, que puede generar una mala orientación de robotización de la industria. Se hace indispensable que la planificación de los recursos humanos, tecnológicos y financieros se realice de una manera inteligente.
Por el contrario la Robótica contribuirá en gran medida al incremento de el empleo. ¿Pero, como se puede hacer esto? al automatizar los procesos en máquinas más flexibles, reduce el costo de maquinaria, y se produce una variedad de productos sin necesidad de realizar cambios importantes en la forma de fabricación de los mismo. Esto originara una gran cantidad de empresas familiares (Micro y pequeñas empresas ) lo que provoca la descentralización de la industria.

6. Industria
Los robots son utilizados por una diversidad de procesos industriales como lo son : la soldadura de punto y soldadura de arco, pinturas de spray, transportación de materiales, molienda de materiales, moldeado en la industria plástica, máquinas-herramientas, y otras más.
A continuación se hará una breve explicación de algunas de ellas.
7. Aplicación de transferencia de material

Las aplicaciones de transferencia de material se definen como operaciones en las cuales el objetivo primario es mover una pieza de una posición a otra. Se suelen considerar entre las operaciones más sencillas o directas de realizar por los robots. Las aplicaciones normalmente necesitan un robot poco sofisticado, y los requisitos de enclavamiento con otros equipos son típicamente simples.
8. Carga y descarga de maquinas.

Estas aplicaciones son de manejos de material en las que el robot se utiliza para servir a una máquina de producción transfiriendo piezas a/o desde las máquinas. Existen tres casos que caen dentro de ésta categoría de aplicación:

  1. Carga/Descarga de Máquinas. El robot carga una pieza de trabajo en bruto en el proceso y descarga una pieza acabada. Una operación de mecanizado es un ejemplo de este caso.
  2. Carga de máquinas. El robot debe de cargar la pieza de trabajo en bruto a los materiales en las máquinas, pero la pieza se extrae mediante algún otro medio. En una operación de prensado, el robot se puede programar para cargar láminas de metal en la prensa, pero las piezas acabadas se permite que caigan fuera de la prensa por gravedad.
  3. Descarga de máquinas. La máquina produce piezas acabadas a partir de materiales en bruto que se cargan directamente en la máquina sin la ayuda de robots. El robot descarga la pieza de la máquina. Ejemplos de ésta categoría incluyen aplicaciones de fundición de troquel y moldeado plástico.
La aplicación se tipifica mejor mediante una célula de trabajo con el robot en el centro que consta de la máquina de producción, el robot y alguna forma de entrega de piezas.